ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

А.А. Насонов

Параллельный диодный ограничитель амплитуды

Учебно-методическое пособие по курсу «Физическая электроника» для студентов направления «Физико-математическое образование», профиль «Физика»

ВОРОНЕЖ ВГПУ 2009

Рецензент

доцент кафедры общей физики В.С. Еремин (ВГПУ)

Насонов А.А.

Н31 Параллельный диодный ограничитель амплитуды : учебно-методическое пособие по курсу «Физическая электроника» для студентов направления «Физико-математическое образование», профиль «Физика» / А.А. Насонов. – Воронеж : ВГПУ, 2009. – 8 с.

В учебно-методическом пособии рассматривается принцип работы параллельного диодного ограничителя амплитуды. Предназначено для студентов направления «Физико-математическое образование», профиль «Физика»

УДК 53(045) ББК 22.2

Ограничитель с нулевым порогом ограничения

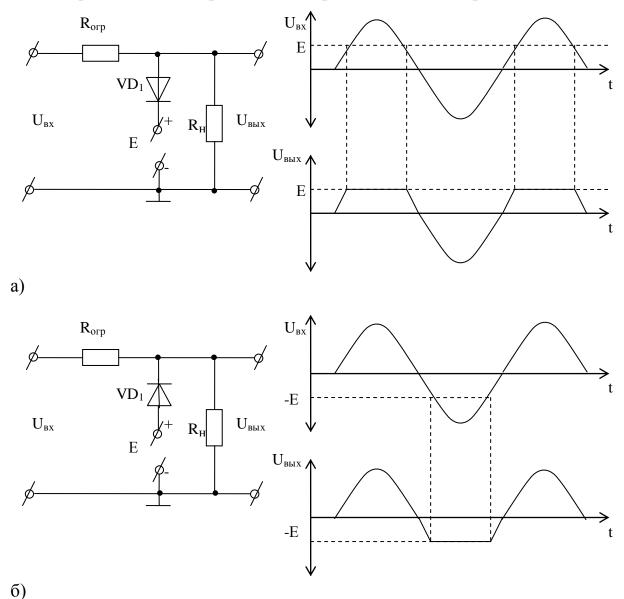
Схема такого ограничителя приведена на рис. 1. Необходимым элементом её является ограничивающий резистор $R_{\text{огр}}$, который выбирают так, чтобы выполнялось неравенство $R_{\text{пр}} << R_{\text{огр}} << R_{\text{н}} << R_{\text{обр}}$, где $R_{\text{пр}}$ и $R_{\text{обр}}$ – сопротивления диода, смещённого в прямом и обратном направлениях.

Входное напряжение ограничителя распределяется между $R_{\text{огр}}$ и участком цепи, образованным параллельно включенным диодом и нагрузкой $R_{\text{н}}$.

При открытом диоде сопротивление этого участка за счёт небольшого R_{np} мало и почти всё входное напряжение выделяется на R_{orp} ($R_{orp} >> R_{np}$), а $U_{\text{вых}} \approx 0$.

Запертый диод не шунтирует нагрузку $R_{_H}$ ($R_{oбp} >> R_{_H}$) и входное напряжение делится между $R_{oгp}$ и $R_{_H}.И$ так как $R_{_H} >> R_{oгp}$, то на нагрузке падает основная часть напряжения $U_{Bax} \approx U_{Bx}$.

В схеме рис. 1 а. диод открывается во время действия положительной полуволны $U_{\text{вх}}$. Поэтому на выходе выделяется по существу только отрицательная полуволна – схема обеспечивает ограничение сверху с нулевым порогом.



Работу ограничителя (рис. 1 а) иллюстрирует временные диаграммы (рис. 1 б). Хотя $R_{orp} << R_{H}$ так, что даже при запертом диоде выходное напряжение несколько меньше входного. Сопротивление открытого диода мало (R_{np} << R_{orp}), но не равно нулю, поэтому часть положительной полуволны $U_{\text{вх}}$ на выходе всё-таки выделяется.

Если изменить направление включения диода (рис. 1 в, г), то на выходе схемы выделится положительная полуволна — схема обеспечивает ограничение снизу с нулевым порогом.

Параллельный ограничитель с ненулевым порогом ограничения

Включение источника в цепь диода позволяет получить уровни ограничения, отличные от нуля. Так, в схеме рис. 2 а в отсутствие входного напряжения диод заперт и $U_{\text{вых}}$ =0. Отрицательная полуволна $U_{\text{вх}}$ не может отпереть диод и почти всё её напряжение выделяется на выходе. Пока положительная полуволна входного напряжения не отпирает диод, напряжение с входа передаётся на выход.

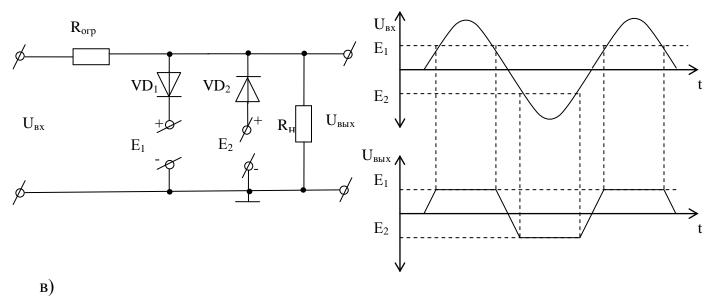


Рисунок 2

После того как $U_{\text{вх}}$ превысит E, диод открывается, и выходное напряжение перестаёт изменяться вслед за входным. Таким образом, схема обеспечивает ограничение сверху на уровне E. Ограничение снизу на уровне E даёт схема, приведённая на рис. E б.

Комбинирует рассмотренные схемы, можно получить двусторонний ограничитель (рис. 2 в). До поступления входного напряжения на диоды VD_1 и VD_2 заперты и $U_{\text{вых}}=0$. Во время действия положительной полуволны $U_{\text{вх}}$ диод VD_2 заперт и схема работает подобно схеме, изображённой на рис. 2а, обеспечивая ограничение сверху на уровне E_1 . Во время действия отрицательной полуволны $U_{\text{вх}}$ заперт диод VD_1 и схема работает подобно схеме, изображённой на рис. 26, обеспечивая ограничение снизу на уровне $-E_2$. Временные диаграммы, изображённые на рис. 2, соответствуют идеальному диоду: $R_{\text{пр}}=0$, $R_{\text{обр}}=\infty$.

Ограничители амплитуды характеризуются, прежде всего, качеством ограничения: коэффициентом передачи как в области пропускания (K_{np}), так и в области ограничения (K_{orp}). Коэффициенты передачи определяются отношением выходного и входного напряжений.

Коэффициенты передачи определяются средним значением сопротивления диода при прямом $R_{\text{пр}}$ и обратном $R_{\text{обр}}$ смещениях, внутренним сопротивлением источника сигнала $R_{\text{вх}}$ и сопротивлением нагрузки $R_{\text{н}}$.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Параллельный ограничитель с нулевым порогом ограничения

- 1. Включить звуковой генератор Γ 3-33, осциллограф C1-73 и дать им прогреться в течение 10 минут.
 - 2. Собрать схему на рис. 1 а.

- 3. На генераторе установить параметры: $R_{\text{вых}} = 600 \text{ Om}$, $f = 1 \text{ к}\Gamma$ ц, $U_{\text{вых}} = 10 \text{ B}$ и выводы подключить к клеммам схемы $U_{\text{вх}}$. Включить внутреннюю нагрузку.
 - 4. Подключить выводы осциллографа к клеммам $U_{\text{вых}}$ схемы.
- 5. Выводы «общего провода» (\perp) обоих приборов должны быть включены вместе.
- 6. Получить на экране устойчивое изображение не менее двух полупериодов $U_{\text{вых}}$ и зарисовать в тетрадь.
- 7. Измерить значения амплитуд $U_{\text{вх}}$ и $U_{\text{вых}}$ с помощью осциллографа и записать их значения.

Примечание: вольтметр генератора измеряет на амплитудное, а действующее значение напряжения, которое меньше в 1.4 раза (Ua = $\sqrt{2}$ U_{π}).

8. Поменять местами выводы диода и сделать аналогичные измерения и рисунки.

Параллельный ограничитель с ненулевым порогом ограничения

- 1. Собрать схему по рис. 2 а.
- 2. Установите регулятор напряжения Е в нулевое положение (против часовой стрелки до упора).
- 3. Подать сигнал с генератора на вход схемы и на осциллографе получить устойчивое изображение.
- 4. Плавно увеличивая напряжение Е, наблюдать за изменением ограничения амплитуды.
 - 5. Зарисовать ограниченный сигнал.
 - 6. Поменять выводы диода местами и полярность источника Е (рис. 2б).
 - 7. Сделать аналогичные наблюдения, измерения и рисунки.
 - 8. Собрать схему по рис. 2 в.
- 9. Изменяя напряжение E_1 и E_2 произвольно, наблюдать за формой ограниченного сигнала.
 - 10. Зарисовать два различных (произвольных) вида ограниченного сигнала.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Назначение ограничителей амплитуды.
- 2. Что такое порог ограничения сигнала?
- 3. Как осуществляется ограничение «сверху» и «снизу»?
- 4. Какие факторы влияют на величину t_{φ} ?
- 5. Принцип действия ограничителя параллельного типа с нулевым порогом.
- 6. Принцип действия ограничителя параллельного типа с ненулевым порогом.
- 7. От каких факторов зависит симметричность формы двухстороннего ограничителя?
 - 8. Применение ограничителей амплитуды.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гершензон Е.М. Радиотехника / Е.М. Гершензон, Г.Д. Полянина, Н.В. Соина. М.: Просвещение, 1986.
- 2. Степаненко И.П.. Основы микроэлектроники / И.П. Степаненко. М.: Лаборатория Базовых Знаний, 2004.
- 3. Харченко В.М. Основы автоматики и электронно-вычислительной техники / В.М. Харченко. М.: Просвещение, 1991.
- 4. Ямпольский В.С. Основы автоматики и электронно-вычислительной техники. M.: Мир 2001.
- 6. Хоровиц П. Искусство схемотехники / П. Хоровиц, У. Хилл. М.: Мир 1998.

Учебное издание

НАСОНОВ Алексей Альбертович

Параллельный диодный ограничитель амплитуды

Учебно-методическое пособие по курсу «Физическая электроника» для студентов направления «Физико-математическое образование», профиль «Физика»

Изготовление оригинала-макета: Ю.С. Топоркова

Подписано в печать 20.12.2009. Формат $60 \times 841/16$. Бумага офсетная. Печать трафаретная. Гарнитура «Таймс». Усл. печ. л. 0,44. Уч.-изд. л. 0,41. Заказ 301. Тираж 15 экз.

Воронежский госпедуниверситет. Отпечатано в типографии университета. 394043, г. Воронеж, ул. Ленина, 86.

А.А. Насонов

Параллельный диодный ограничитель амплитуды

Учебно-методическое пособие по курсу «Физическая электроника» для студентов направления «Физико-математическое образование», профиль «Физика»